关于一道高斯函数题目

2 minute read

Published:

令 $\lfloor x \rfloor$ 为不大于 $x$ 的最大整数。${x} = x - \lfloor x \rfloor$。

题目 1

题面

求值:

\[\sum\limits_{i=1}^{2015} \left\{\frac {2015 i} {2016} \right\}\]

标准答案

\[\begin{aligned} & \left\{\frac {2015 i} {2016} \right\} \\ =& \left\{\frac {(2016-1) i} {2016} \right\} \\ =& \left\{\frac {-i} {2016} \right\} \\ =& 1 - \frac i {2016} \end{aligned}\]

对这个求和就没有难度了。答案为 $\boxed{\frac {2015} 2}$。

题目 2

求值:

\[\sum\limits_{i=1}^{2015} \left\{\frac {2011 i} {2016} \right\}\]

尝试使用上文的方法

\[\begin{aligned} & \left\{\frac {2011 i} {2016} \right\} \\ =& \left\{\frac {(2016-5) i} {2016} \right\} \\ =& \left\{\frac {-5i} {2016} \right\} \\ \end{aligned}\]

好了不会了。

使用数论!

\[\begin{aligned} & \left\{\frac {2011 i} {2016} \right\} \\ =& \frac 1 {2016} (2011i \bmod 2016) \\ \end{aligned}\]

引理 1

若 $a \perp m$ 且 $ax \equiv ay \pmod m$,则 $x \equiv y \pmod m$。

证明:$a(x-y) \equiv 0 \pmod m$,因此 $x-y \equiv 0 \pmod m$。

继续推导

\[\begin{aligned} & \sum\limits_{i=1}^{2015} \left\{\frac {2011 i} {2016} \right\} \\ =& \frac 1 {2016} \sum\limits_{i=1}^{2015} (2011i \bmod 2016) \\ =& \frac 1 {2016} \sum\limits_{i=1}^{2015} i & \text{引理 1} \\ =& \boxed{\frac {2015} 2} \end{aligned}\]

题目 3

求值:($a,m$ 均为正整数)

\[\sum\limits_{i=1}^{m} \left\{\frac {a \times i} m \right\}\]

使用数论!

引理 2

若 $ax \equiv ay \pmod m$,则 $x \equiv y \pmod {\frac m {\gcd(a,m)}}$。

证明:两边同除 $\frac a {\gcd(a,m)}$ 后显然。

继续推导

\[\begin{aligned} & \sum\limits_{i=1}^m \left\{\frac {a \times i} m \right\} \\ =& \frac 1 m \sum\limits_{i=1}^m (ai \bmod m) \\ =& \frac 1 m \gcd(a,m)^2 \sum\limits_{i=1}^{\frac m {\gcd(a,m)}-1} i & \text{引理 2} \\ =& \boxed{\frac {m - \gcd(a,m)} 2} \end{aligned}\]

另一种方法:皮克定理

原式即为:

\[\sum\limits_{i=1}^m \frac {a \times i} m - \sum\limits_{i=1}^m \left\lfloor \frac {a \times i} m \right\rfloor\]

而 $\sum\limits_{i=1}^m \left\lfloor \frac {a \times i} m \right\rfloor$ 即为 $y = \frac a m x$ 上及其下方的整点个数。使用皮克定理:

\[I = A - \dfrac B 2 + 1\] \[\sum\limits_{i=1}^m \left\lfloor \frac {a \times i} m \right\rfloor - \gcd(a,m) - a + 1 = \frac {am} 2 - \frac{m + a + \gcd(a,m)} 2 + 1\] \[\sum\limits_{i=1}^m \left\lfloor \frac {a \times i} m \right\rfloor = \frac {am + a - m + \gcd(a,m)} 2\]

化简可得:

\[\sum\limits_{i=1}^m \left\{\frac {a \times i} m \right\} = \boxed{\frac {m - \gcd(a,m)} 2}\]

总结

  • 遇到高斯函数与分数的相关问题,可以考虑数论中的 $\bmod$ 运算。
  • 利用高斯函数的几何意义,将求和问题改为数整点问题,利用皮克定理求解。
\[\sum\limits_{i=1}^m \left\lfloor \frac {a \times i} m \right\rfloor = \frac {am + a - m + \gcd(a,m)} 2\] \[\sum\limits_{i=1}^{m-1} \left\lfloor \frac {a \times i} m \right\rfloor = \frac {am - a - m + \gcd(a,m)} 2\] \[\sum\limits_{i=1}^m \left\{\frac {a \times i} m \right\} = \frac {m - \gcd(a,m)} 2\]

参考