Tongrui 5.3 方程

2 minute read

Published:

总结

  • 非齐次的式子可以考虑先齐次化。
  • 遇到根号加根号,先看是不是 $\sqrt{x-a} + \sqrt{y-a}$ 的结构,如果是就无脑构造三角形。

Example 5.16 HMMT 2025 Feb AN #7 (Easy)

答案文件

\[\begin{cases} 2 (a^2 + 1) = 3 (b^2 + 1) = 4 (c^2 + 1) \\ ab + ac + bc = 1 \\ a, b, c > 0 \\ \end{cases}\]

求 $a + b + c$。

齐次化。

\[\begin{aligned} & a^2 + 1 \\ =& a^2 + (ab + ac + bc) \\ =& (a + b) (a + c) \\ \end{aligned}\]

用一样的手法处理:

\[2 (a+b) (a+c) = 3 (a+b) (b+c) = 4 (a+c) (b+c)\] \[\frac 2 {b+c} = \frac 3 {a+c} = \frac 4 {a+b}\]

可以解出 $a:b:c = 5:3:1$。最终答案 $\boxed{\frac 9 {23} \sqrt{23}}$。

Example 5.14 AIME II 2006 #15 (Easy)

已知实数 $x,y,z$ 满足

\[\begin{align*} x &= \sqrt{y^2-\frac{1}{16}}+\sqrt{z^2-\frac{1}{16}}, \\ y &= \sqrt{z^2-\frac{1}{25}}+\sqrt{x^2-\frac{1}{25}}, \\ z &= \sqrt{x^2 - \frac 1{36}}+\sqrt{y^2-\frac 1{36}}, \end{align*}\]

求 $x + y + z$。

\[\frac 1 4 x = \frac 1 5 y = \frac 1 6 z = 2A\] \[\begin{cases} x = 8A \\ y = 10A \\ z = 12A \\ \end{cases}\] \[A = \sqrt{p (p-x) (p-y) (p-z)} = 15 \sqrt 7 A^2\] \[A = \frac 1 {15 \sqrt 7} \implies x + y + z = 30A = \boxed{\frac 2 {\sqrt 7}}\]

Example 5.18 AIME I 2022 #15 (Normal)

正实数 $x,y,z$ 满足

\[\begin{align*} \sqrt{2x-xy} + \sqrt{2y-xy} &= 1 \\ \sqrt{2y-yz} + \sqrt{2z-yz} &= \sqrt2 \\ \sqrt{2z-zx} + \sqrt{2x-zx} &= \sqrt3. \end{align*}\]

求 $((1-x)(1-y)(1-z))^2$。

Sol 1

对每个方程单独构造一个三角形:

TODO: 图画错了

\[\begin{aligned} \sin \alpha = \frac {\sqrt{xz}} {\sqrt{2z}} &= \frac {\sqrt{2x}} {2R} \\ R &= 1 \\ \end{aligned}\]

由于外接圆大小相同,$\sqrt{2x}, \sqrt{2y}, \sqrt{2z}$ 各自在不同三角形中所对的角是相同的,记为 $\alpha, \beta, \gamma$。

\[\begin{cases} x = 2 \sin^2 \alpha \\ y = 2 \sin^2 \beta \\ z = 2 \sin^2 \gamma \\ \end{cases}\] \[\begin{cases} \alpha + \gamma = 180° - \arcsin \frac 1 2 \\ \beta + \gamma = 180° - \arcsin \frac {\sqrt 2} 2 \\ \alpha + \beta = 180° - \arcsin \frac {\sqrt 3} 2 \\ \end{cases} \implies \begin{cases} \alpha = \frac {135} 2° \\ \beta = \frac {105} 2° \\ \gamma = \frac {165} 2° \\ \end{cases}\] \[\begin{aligned} & ((1-x)(1-y)(1-z))^2 \\ =& ((1 - 2 \sin^2 \alpha) (1 - 2 \sin^2 \beta) (1 - 2 \sin^2 \gamma))^2 \\ =& (\sin(2 \alpha) \sin(2 \beta) \sin(2 \gamma))^2 \\ =& \boxed{\frac 1 {32}} \\ \end{aligned}\]

Sol 2

\[\sqrt x \sqrt{2 - y} + \sqrt y \sqrt{2 - x} = \square\]

这个结构让人联想到

\[\sin A \cos B + \sin B \cos A\]

又注意到 $(\sqrt x)^2 + (\sqrt{2-x})^2 = 2$,考虑做一个 $\sqrt 2$ 倍的缩放:

\[\sqrt {\frac x 2} \sqrt{\frac {2 - y} 2} + \sqrt {\frac y 2} \sqrt{\frac {2 - x} 2} = \frac \square 2\]

换元 $\sin A = \sqrt {\frac x 2}, \sin B = \sqrt {\frac y 2}$:

\[\sin A \cos B + \sin B \cos A = \frac \square 2\]

后续做法一致。